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Two techniques are suggested for identifying the temperature dependence of the thermal conductivity of a new class 

of materials. The results have been obtained for the metallic glass Co77Fe 4Cr7Si8B r 

Amorphous metallic alloys or, as they are also called, metallic glasses (MG), represent a new class of materials whose 

systematic study began in the last 10-15 years. Investigations of the electric, magnetic and mechanical properties of MG have 

demonstrated the exceptional potential of these materials for manufacturing magnetic wires of transformers and magnetic heads, 

corrosion-resistant protective coatings, structural reinforcements, cutting tools, etc. There are virtually no losses for remagnetiza- 

tion of some MG, their corrosive stability is by several orders higher than that of special stainless steels; the high strength and 

hardness combine with a high rigidity and elasticity. Since MG specimens can be obtained only in the form of thin foils or film 

coatings, experimental investigation of their thermophysical characteristics (TPC) and thermodynamic properties was virtually not 

carried out, because the familiar methods of determining the above-indicated properties do not always allow one to obtain 

reliable results for such specimens. Therefore, it seems worthwhile to look for nontraditional ways of identifying TPC which 

would be appropriate for such specific bodies as MG specimens. One of these ways is the employment of the procedures used for 

solving inverse heat conduction problems (IHCP), in particular, the methods of solving internal IHCP's [1] which allow one to 

determine the TPC of materials from information obtained experimentally for the temperature field of the specimens made from 

these materials. 

We tested the indicated way of identifying TPC when we determined the temperature dependence of the thermal 

conductivities for several types of amorphous metallic alloys. In doing so, we used nontraditional techniques not only in the 

computational portion of the study, but also at the stage of thermophysical experiment. 

Investigation of the thermal conductivity 2 of MG was carried out on a universal low-temperature thermophysical 

apparatus (ULTA) which had been modified for the purpose and which was one of the most perfect adiabatic calorimeters with 

the operational range of temperatures from 4.2 to 373 K. 

The thermal conductivity measurements by the steady-state method, allowed for on the ULTA, is extremely difficult to 

realize technically in view of the fact that one can ensure a steady thermal regime for a specimen only in the case when heat 

removal from the "cold" surface of the specimen is closely controlled. However, in the case of measurement errors greater than 

unity, it is more expedient to use the nonsteady-state method which is more easily realizable. 

The studied material, in the form of a foil strip, is rolled up into a coil and fixed at the ends faces of two massive (as 

compared with the specimen) cylindrical body-heaters 1 and 2 (Fig. 1). The thermal contact between the heaters and specimen 

3 is ensured by the careful treatment of contracting surfaces and by applying a thin layer of a heat conducting lubricant (graphite 

with vacuum lubricant or diffusion oil) on these surfaces before assembly. Upon assemblage, tight pressing is provided by 

tightening thin capron threads. 

At the places of contact with the specimen, the junctions of a differential copper-constantan thermocouple were 

positioned in the body-heaters. The thermocouple measured the temperature difference on the specimen. The body-heaters are 

surrounded by internal thermostatic control screens 4 whose temperatures are kept equal to those of the corresponding body - 
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Fig. 1. Schematic of the thermal conductivity measuring cell. 

heaters. The external thermostatic control screen 5 secures the minimum possible temperature difference between itself and the 

internal screens and takes over the major portion of heat exchange with the vacuum chamber cap 6. To reduce convective heat 

transfer, the measuring module is exhausted to a pressure of not higher than 5 �9 10 -5 mm Hg. 

The measured values in the experiment were the absolute temperature of the body 1 T 1 , the difference of  temperatures 

AT between bodies 1 and 2, the powers P1 and P2 of body-heaters 1 and 2, the time between measurement A~. The mean 

cross-sectional area of  the specimen S was found by measuring its volume and actual length. Formally, the distance between 

bodies 1 and 2 is considered to be the specimen length l. 

To calculate the thermal conductivity from the familiar formulae of the method of monotonous heating, the data on the 

heat flux in the specimen itself are required. This can be both the heat flux density at the place of specimen contact with 

body-heater 1 ql and with body-heater 2 q2" When 2(T) is calculated by the methods of inverse problems, it is desirable to have 

both of these values to assign the boundary conditions (BC). Since the measurement of these values is not allowed for in the 

above-described apparatus, we applied their indirect determination by carrying out a special test in the same apparatus but 

without a specimen. 

In the experiment with a specimen, an electric heater for body 1 is a heat source which monotonically heats the system. 

Its electric energy W I is spent for heating the entire system and for heat exchange with the thermostatic screens, i.e., 

= QI + Q' + Q; + Q'I Q" @ 

where Q',  QI ' ,  and Q2' are the quantities of heat lost (obtained) by the specimen, body 1, and body 2, respectively, owing to 

incomplete adiabaticity of the system; Q", Ol", and Q2" are the quantities of heat spent raising the temperature of the speci- 

men, body 1, and body 2, respectively. 

The heat supplied to the specimen through body 1 is determined by the expression 

Qz = W~ ..... f}' .... ('?i', (1) 

whereas that removed from it by heat conduction through body 2 - by the expression 

= + (2) 

Having measured the heat capacities of the specimen and bodies 1 and 2 in separate tests, it is possible to calculate the quantity 

of heat Q" + QI"+  Q2" spent during any length of time for system heating. To determine QI(T1) and Q2(T1), a test is 

conducted in which, although the specimen is absent, all the geometric parameters of the main experiment and the depth of the 

vacuum are maintained. The rate of heating and the remaining thermal quantities are maintained the same as in the main 

experiment due to the switching-in of the heater for body 2. The powers of the heaters are controlled automatically in the course 

of the experiment with the aid of a computer. 

In the experiment with an empty cell (without a specimen), the entire heat Wln emitted by the heater of  body 1 is spent 

for heating this body and for heat exchange with the surrounding screens and body 2. The heat W2 n emitted by the heater of 

body 2 is distributed similarly. We shall assume that the heat losses in experiments with a specimen and without it are equal, 
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though there are differences in the heat transfer conditions owing to the screening of a portion of the surfaces of bodies 1 and 

2 in radiative heat exchange between them. Taking into account the small temperature differences and insignificant screening 

area, these differences can be neglected. Then, the sought heat losses from the surfaces of bodies 1 and 2 are found from 

relations 

r l l  ts rt 
Q I =  W I ' - -QI ,  Q2 n 

Equations (1) and (2), with the above relations taken into consideration, acquire a form convenient for calculations: 

Q~ = w1 - -  w~; Q~ = w $  

Proceeding to determination of the heat flux densities at the places of specimen butting with body 1 (ql) and 2 (qz), we 

shall consider two important circumstances: first, in the case at hand all of the measured and computed quantities can be 

regarded conveniently as functions of T 1 (of the temperature of body 1, "temperature of assignment"), which in turn is a discrete 
function of time; and, second, the discrepancy between the rates of heating body 2 in the experiments with a specimen and 

without it is possible. We obtain 

c h (T~) = P* (T~)- - pn{Ta) k (T~) , 

S 

Pe :121 

q2 (T~) = ~Tv,  (T1) k 

S 

where Pt is the power of  the electric heater for body 1 in the experiment with a specimen; Pt n, P2 n are the powers of the heaters 

for bodies 1 and 2 in the experiment without a specimen; k is the factor which takes into account the different rate of heating in 

the experiments with a specimen and without it, k = (dT2/dr)/(dT2n/dT) (T 2, Tz n are the temperatures of body 2 in the experi- 

ments with a specimen and without it). 

Based on the heat flux densities calculated in this way and on the linear heat conduction model, we obtain two formulae 

for calculating the thermal conductivity: 

~i (7"1) q~ (7'~) l ~,~ (Tj) .... q,., (7'~)l 
AT (T3' AT (T~) 

The values of the thermal conductivities j I and 2II are  aggravated with systematic error components due to the fact taht the 

specimen heat capacity not taken into account in this case and to the heat losses from its surface into the ambient medium. 

These systematic error components are compensated for in great part if the thermal conductivity is found as the arithmetic mean 

of two values, i.e., 

~. (T~)= ~ (Z ~ (7'~)+ ~:~ (Tt)),,2. (3) 

In this case the errors are compensated because the neglected quantity of heat spent for heating the specimen and the 

losses from its surface will overshoot the result when calculating 2I(T1) and undershoot it when calculating 2II(T1), since the 

quantity of heat QI(Tt)  supplied to the specimen from body 1 is greater than the quantity Q2(T1) removed to body 2 (provided 

the heat losses from the specimen surface are small as compared with the heat spent for its heating). The remaining systematic 

error components in the measurement of 2(T) due to the nonideal contact between the specimen and the damps, due to the 

errors in the measurements of the length and cross-sectional area of the specimen, etc., are to be related to the noneliminated 

remainder of the systematic error and are to be evaluated experimentally while qualifying the procedure of measurements. The 

experiments have shown that elimination of a portion of the systematic error in calculations by formula (3) is effective only for 

the functions TI(~ ) being close to linear ones. In the case of a more or less strong nonlinearity of the functions ,~(T) and c(T), 

which is responsible for the nonlinearity of TI(r  ), the method described leads to errors as large as tens of percents. The sole way 

for these errors to be eliminated is the use of the nonlinear heat conduction equation with the subsequent solution of the 

internal IHCP. 

To process the data of the experimental thermophysical investigation of MG, of all the methods used for solving internal 

inverse problems, we have selected that one which relates to the so-called extremal methods of solution. In contrast to non- 

extremal (mostly analytical) methods, in which the temperatures measured are identified with the mathematical model potentials 

and the inverse problem solution is reduced to the solution of a system of differential or algebraic equations in heat transfer pa- 
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Fig. 2. Values of 2 (W/(m .K)) for 12Khl8N10T steel as a 

function of T(K). 

parameters, in extremal methods the difference (residual) between the measured and predicted temperatures is minimized by a 

purposive selection of the unknown parameters in order to numerically realize the mathematical model of the heat conduction 

process observed. On the one hand, this allows one to consider rather complex heat-conduction problems, because numerical 

methods of solving direct problems have been rather well developed (and this is the key procedure in extremal methods as to the 

amount of computations). On the other hand, a consecutive controlled decrease in the residual makes it possible to apply 

diversified methods for solution regularization. The main principle of obtaining a stable solution is: a minimized residual must 

be commensurable with the error of the initial data. 

The original tabulated information on the experimentally obtained temperatures, fluxes, and other time-dependent 

quantities is transformed into analytical functions of time by approximation methods. This needs to be done because the 

moments of measuring different values may not coincide with each other or may not correspond to the temporal layers in the 

numerical solution of the problem. 

Moreover, approximation of input functions leads to their smoothing-out, which is an extra factor for ensuring the 

stability of a computational process. 

The functions qa(T) and q2(r) obtained in this way are used as boundary conditions of the second kind when forming a 

mathematical model of the thermal process proceeding in a specimen, whereas the functions TI(T ) and T2(T ) serve as the 

reference functions in solving IHCP's. With the experimental conditions taken into account, the model has the following form 

a (z(r) or I O'--ffv \ Ox / - q v  - ~  O < x < l, x >  O; 

T(x,  O) = T, in:; 

'aT] = ql(,~), _ ~,(T) 0~T] = q2(x); 
~, (T) -ffffx x=o ox 1,=1 

T (0, : ( '0,  7" (Z, , )  :-:- 

where x is the space coordinate along the specimen axis; Tin is the initial temperature of the specimen; qv the inner heat sink. 

The introduction of the function qv(X, T) into the heat conduction equation is associated with heat removal from the specimen 

surface as a result of radiative exchange with the screens and reradiations between the points at the inner cylindrical surface of 

the specimen being taken into account. 

In addition to the reference values, boundary conditions, and geometric information, the original data involve the 

functions c(T) and some values of the parameters which determine 2(T) and which are selected on the basis of  the evidence 

concerning the thermal conductivity of the materials similar in chemical composition to that studied. The unknown function 

2(T) is assigned in the form of the sum of the Chebyshev series whose coefficients are the unknown parameters. 

To numerically simulate the phenomenon of heat conduction, we carried out the finite-difference approximation of the 

system of differential equations entering into the mathematical model of the phenomenon. The heat conductions between the 

nodes correspond to 2[(T i + Ti+l)/2] (i is the number of the nodal point), whereas the accumulation of heat for the time step 

is determined by the heat capacity c[(Tj + Tj+I)/2 ] (j is the number of the temporal layer). In view of this, the simulation 

procedure represents a program for solving a system of nonlinear algebraic equations with a band matrix. In the given one-di- 

mensional case, the band width is equal to 3. The nonlinear nature of the equations accounts for the necessity to conduct corn- 
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Fig. 3. Value of 2 (W/(m .K)) for amorphous alloy Co77Fe4Cr7SisB 4 as a 

function of T (K). 

putations with iterational verification of the system coefficients. If the results of two successive solutions of the system of 

finite-difference equations differ from one another by less than c~ .0.1 (6 is the .error of temperature measurement), the 

iterations are stopped. Usually, no more than 10 iterations are required. If there are more than 10 iterations, the residual is 

increased by adding a penalty function to it. The penalty is a lso assigned when 2(T), if only at one point of the temperature 

range [Train, Tmax] , becomes smaller than or equal to zero. The minimum Tmin and maximum Tma x values of  the temperature are 

determined by the initial data of the problem. 

The minimization of the residual as a function of the parameters of analytical representation is an essential point 

underlying the solution of IHCP. A direct result of the solution are those values of the indicated parameters with which the 

residual is minimal and satisfies the  regularization condition (i.e. the minimal residual is not smaller than the temperature 

measurement error). 

To check the validity of the proposed approach, we carried out identification of the thermal conductivity of 2Khl8N10T 

stainless steel. In Fig. 2 the temperature dependence of the thermal conductivity of very familiar material is given plotted on the 

basis of reference data [2] (curve 1), those calculated from Eq. (3) (curve 2), and those obtained by solving IHCP (curve 3). 

Comparison of these results allows a conclusion about the possible use of the described experimental apparatus and procedures 

for identifying the thermal conductivities of solids. The error of identification by Eq. (3) and by solving the IHCP did not exceed 

10 and 5%, respectively. Especially large deviations from the standard data were observed with the use of traditional equations 

within the temperature range of 220-270 K. This is attributed to the fact that the system of automatic regulation of specimen 

heating within this temperature range did not ensure linearity of the function Tl(t), with curve 3 in Fig. 2 approaching the 

standard relation closer than curve 2, since the result of the solution of IHCP depends little on the heating rate. 

The conclusions drawn when conducting a check experiment and processing its results were taken into account for 

identifying the temperature dependence for amorphous alloy Co77Fe4Cr7SisB4 . The specific features of a sample of this material, 

which at present can be produced only in the form of a miniature thin tape preventing its investigation by traditional heat 

conduction measurement techniques, are rather fully taken into account in the apparatus suggested. Moreover, a substantial 

temperature dependence of the thermal conductivity of MG is taken into account most correctly and is determined when 

processing the test data by the IHCP methods based on the nonlinear model of heat conduction. In view of this, we regard that 

the most reliable result of  the study of 2(T) for Co77Fe4Cr7SisB 4 is the dependence presented by curve 1 in Fig. 3. It has been 

obtained by solving the IHCP. 

Curve 2 reflects the results of heat conduction calculations by Eq. (3). The greatest difference in the values of 2 

obtained by these two techniques is observed, as should be expected, at temperatures exceeding 220 K when the thermometry 

results varied nonlinearly. This led to a higher error of calculations by Eq. (3). 
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In conclusion, it should be noted that reliable information on the thermal conductivity of amorphous metallic alloys 

makes it possible not only to carry out thermal engineering calculations of products made from these unique materials, but also 

to judge their operating characteristics. The thermophysical properties of MG are structurally sensitive physical quantities. In 

some cases they can be adopted as a foundation for developing the methods of nondestructive strength testing, magnetic, and 

other properties. The methods of solving IHCP help in increasing the accuracy of identification, especially required in this case, 

and to reduce the limits imposed on the mode of heating a specimen when conducting a thermophysical experiment. 

NOTATION 

;l is the thermal conductivity; T, temperature; P, power; T, time; l, S, specimen length and its cross-sectional area; q, 

heat flux density; Q, quantity of heat; W, electric current energy; k, factor accounting for differences in heating rates; c, %, mass 

and volumetric heat capacities; x, space coordinate; qv, specific volumetric power of internal heat source; 8, error of temperature 

measurements; Tmin, Tmax, limits of operational temperature range. 
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